This study addresses the challenge of identifying hot topics in online health communities by introducing an automatic topic detection method that integrates medical domain-specific features with traditional keyword-based text clustering. Testing the method on discussion boards for lung cancer, breast cancer, and diabetes, the research finds that common hot topics include symptoms, examinations, drugs, procedures, and complications, with notable differences in focus across disease types. This approach offers a scalable solution for understanding patient needs and interests in rapidly growing online health data.
-
Lu, Yingjie, et al. "Health-related hot topic detection in online communities using text clustering." Plos one 8.2 (2013): e56221.
-
Members
- IC Essentials
- Como
- Nathan Explosion
- Chris Anderson
- Square Wheels
- V0RT3X
- Adriano Faria
- Split
- bernhara
- Hong98
- opentype
- StevenM
- eivindsimensen
- abobader
- JoelR
- PPlanet
- GrantHorizons
- NewVicious
- Sinistra
- UrbanNest Realtors
- Ioannis D
- Paul Cojocariu
- TomCat
- onlyME
- burnyourfeelings
- Maxius
- Yurii
- Voyage
- Steph40
- Videoflicks
- eliteone
- rnorth6920
- Matt
- ArashDev
- terabyte
- Dancho Danchev
- Voidcraft Studios
- DawPi
- Jon Erickson
- ButterflyPixel
- ReyDev
- Live Games
- Charlie Feigel
- Bob Schwarz
- aLEX49566
- bdmusic 24
- AdamOnTech
- william trowbridge
- aXenDev
- Astronis
- Labis
- adik
- DaninMS
- PrettyPixels
- ali hagi
- A Zayed
- Ticulica
- N700
- envy
- TheLlamaman
- John Horton
- Ramses
- Analog
- IPS THEME
- isvans
- Jimmy Huseman
- Claudia999
- Venthas
- Kirill Gromov
- Dilip
- Majster87
- AnonDoggo
- Empire
- XwReK
- COSMIN
- Hexzon
- GazzaGarratt
- Auto Evoke
- JoeyM
- Ryan
- master963
- TwinTurbo
- Uncrowned Gaurd
- Foxtrek64
- bing11
- Andy Y
- Copycat
- Karyexo Karyexooo
- Kelkrel
- Myr
- dolphin
- Richard Arch
- yaotzin
- lanc3lot
- Brian
- Nicolas PC
- Synergy
- Maria
- Nomad
- scaz